2,916 research outputs found

    Hybrid intelligent deep kernel incremental extreme learning machine based on differential evolution and multiple population grey wolf optimization methods

    Get PDF
    Focussing on the problem that redundant nodes in the kernel incremental extreme learning machine (KI-ELM) which leads to ineffective iteration increase and reduce the learning efficiency, a novel improved hybrid intelligent deep kernel incremental extreme learning machine (HI-DKIELM) based on a hybrid intelligent algorithms and kernel incremental extreme learning machine is proposed. At first, hybrid intelligent algorithms are proposed based on differential evolution (DE) and multiple population grey wolf optimization (MPGWO) methods which used to optimize the hidden layer neuron parameters and then to determine the effective hidden layer neurons number. The learning efficiency of the algorithm is improved by reducing the network complexity. Then, we bring in the deep network structure to the kernel incremental extreme learning machine to extract the original input data layer by layer gradually. The experiment results show that the HI-DKIELM methods proposed in this paper with more compact network structure have higher prediction accuracy and better ability of generation compared with other ELM methods

    A broken solar type II radio burst induced by a coronal shock propagating across the streamer boundary

    Full text link
    We discuss an intriguing type II radio burst that occurred on 2011 March 27. The dynamic spectrum was featured by a sudden break at about 43 MHz on the well-observed harmonic branch. Before the break, the spectrum drifted gradually with a mean rate of about -0.05 MHz/s. Following the break, the spectrum jumped to lower frequencies. The post-break emission lasted for about three minutes. It consisted of an overall slow drift which appeared to have a few fast drift sub-bands. Simultaneous observations from the Solar TErrestrial RElations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) were also available and are examined for this event. We suggest that the slow-drift period before the break was generated inside a streamer by a coronal eruption driven shock, and the spectral break as well as the relatively wide spectrum after the break is a consequence of the shock crossing the streamer boundary where density drops abruptly. It is suggested that this type of radio bursts can be taken as a unique diagnostic tool for inferring the coronal density structure, as well as the radio emitting source region.Comment: 12 pages, 5 figures, accepted by ApJ 201

    C9orf72 mutation is rare in Alzheimer's disease, Parkinson's disease, and essential tremor in China

    Get PDF
    GGGGCC repeat expansions in the C9orf72 gene have been identified as a major contributing factor in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Given the overlapping of clinical phenotypes and pathological characteristics between these two diseases and Alzheimer's disease (AD), Parkinson's disease (PD), and essential tremor (ET), we speculated regarding whether C9orf72 repeat expansions also play a major role in these three diseases. Using the repeat-primed polymerase chain reaction method, we screened for C9orf72 in three groups of patients with PD (n = 911), AD (n = 279), and ET (n = 152) in the Chinese Han population. There were no pathogenic repeats (>30 repeats) detected in either the patients or controls (n = 314), which indicated that the pathogenic expansions of C9orf72 might be rare in these three diseases. However, the analysis of the association between the number of repeats (p = 0.001), short/intermediate genotype (short: <7 repeats; intermediate: ≥7 repeats) (odds ratio 1.37 [1.05, 1.79]), intermediate/intermediate genotype (Odds ratio 2.03 [1.17, 3.54]), and PD risks indicated that intermediate repeat alleles could act as contributors to PD. To the best of our knowledge, this study is the first to reveal the correlation between C9orf72 and Chinese PD, AD, or ET patients. Additionally, the results of this study suggest the novel idea that the intermediate repeat allele in C9orf72 is most likely a risk factor for PD

    α-Mangostin protects against myocardial ischemia reperfusion injury by suppressing the activation of HIF-1α

    Get PDF
    Purpose: To investigate the cytoprotective effect of α-mangostin on myocardial tissues in ischemic rats, and the underlying mechanism.Methods: Histopathological changes in myocardial tissues were determined using inverted microscope. Protein expressions were measured by western blotting, while enzyme-linked immunosorbent assay (ELISA) was used to assay the expression levels of caspase-3, caspase-9 and caspase-8.Results: Treatment with α-mangostin (20 mg/kg) suppressed production of reactive oxygen species (ROS) and lipid peroxides in myocardial tissues of MI/R rats, and significantly alleviated MI/R injurymediated reduction in ATP levels in cardiac tissues (p &lt; 0.05). α-Mangostin treatment of MI/R injury rats suppressed HIF-1α activation, and markedly elevated BNIP3 levels, relative to model group. Moreover, MI/R-induced cardiomyocyte apoptosis was significantly alleviated by α-mangostin treatment (p &lt; 0.05). Treatment with α-mangostin also suppressed I/R-induced increases in caspase-8 and caspase-3 activation in myocardial tissues, improved Nrf-2 activation, and promoted HO-1 and GST levels in MI/R injury rats (p &lt; 0.05).Conclusion: These results suggest that α-mangostin protects rat cardiac tissues from MI/R-induced oxidative damage via reduction of HIF-1α expression, inhibition of ROS generation and suppression of apoptosis. Therefore, α-mangostin may be of therapeutic importance for the management of myocardial ischemia in humans. Keywords: α-Mangostin, Hypoxia, Inflammation, Nrf-2, Oxidative stress, Reperfusio

    In situ Synthesis of Au-Induced Hierarchical Nanofibers/Nanoflakes Structured BiFeO3 Homojunction Photocatalyst With Enhanced Photocatalytic Activity

    Get PDF
    In order to further improve the photocatalytic performance of BiFeO3 (BFO), novel Au-induced hierarchical nanofibers/nanoflakes structured BiFeO3 homojunctions (Aux-BFO, x = 0, 0. 6, 1.2, 1.8, 2.4 wt%) were in situ synthesized through a simple reduction method with assist of sodium citrate under the analogous hydrothermal environment. The effect of loading amount of Au nanoparticles (NPs) on the physicochemical properties and photocatalytic activity was investigated in detail. The Au1.2-BFO NFs sample show the best photocatalytic activity (85.76%), much higher than that for pure BFO samples (49.49%), mainly due to the hierarchical nanofibers/nanoflakes structured homojunction, the surface plasmon resonance (SPR) effect of Au NPs, as well as the presence of defects (Fe2+/Fe3+ pairs and oxygen vacancy). Furthermore, the possible formation mechanism of the unique homojunction and the enhanced photocatalytic mechanism for the degradation of methylene blue (MB) dye are proposed. It is proven that holes (h+) play the decisive role in the photocatalytic process. The present work provides a fascinating way to synthesize efficient homojunctions for the degradation of organic pollutes

    Human umbilical cord mesenchymal stem cells inhibit coronary artery injury in mice with Lactobacillus casei wall extract-induced kawasaki disease

    Get PDF
    Kawasaki disease (KD) is a serious threat to children’s physical and mental health. This study investigated the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on KD coronary arteritis induced by Lactobacillus casei wall extract (LCWE) in an animal model. Sixty BALB/C mice were randomly assigned to three groups (n = 20 mice per group). Mice in the model and stem-cell groups were injected with LCWE, while the control-group mice were injected with phosphate-buffered saline (PBS) for 2 days. At day 16 of modeling, PBS was injected into the control and model-group mice, and hUC-MSCs were injected into the stem-cell group mice for 10 days. At days 4, 15, 26, and 32 of modeling, echocardiography and histopathology were performed to examine the cardiac structure and the morphological changes in the coronary arteries in each group. B-ultrasonography showed that 57.5% (23/40) of the mice had coronary artery lesions, of which 5% (2/40) had right coronary artery aneurysm, 27.5% (11/40) had coronary artery wall thickening, a widened inner diameter of the main artery of the left coronary artery, and thickened intima. Histopathology showed slight swelling of the epicardium of the aortic valve, mitral valve, right ventricle, and atrium, as well as scattered infiltration of a few neutrophils. Following hUC-MSCs intervention treatment, B-ultrasonography showed a decrease in the main coronary artery diameter, while histopathology showed no obvious vascular inflammatory reaction or other obvious abnormalities. These findings highlight that hUC-MSCs inhibit coronary artery injury in animal models of KD induced by LCWE
    corecore